Obtaining Cycle Breakpoints and Predicting Next Cycles:
An Exploratory Analysis of Generative Programming and Time Series
Forecasting to Derive Insight for Artificial Muscle Movement

Navraj Narula
Creative Machines Lab
Computer Science Department
nnn2112@columbia.edu
December 22, 2017
Fall 2017

Abstract

Abhijit Naskar, author of The Art of Neuroscience in Everything, once said: “Artificial
intelligence can be a supplement to human insight, not substitute.” Working with a dataset
exceeding a hundred thousand rows can be troublesome for any human to tackle in a timely
manner; however, given the fact that a human has made a computer aware of meaning associated
with the unfamiliar content it needs to parse, a machine can deliver outputs both quickly and
continuously.

During the course of this semester, I worked to help the programs I built understand the meaning
behind a large dataset containing information pertaining to the time and load of 47 cycles related
to the movement of a soft, artificial muscle.

In mathematically breaking down the dataset, I was able to obtain the start point for each cycle,
end point for each cycle, the total time per cycle, the heating time per cycle, and the cooling time
per cycle. After providing this narration for my dataset, I was then able to think more critically
about how to predict the next three cycles in my dataset. By applying the concept of time series
forecasting, I was able to build both an autoregression model and a persistence model in order
predict next values.

Despite improvements to be made in regards to precision, my results for each task indicate a
close correlation with the actual results.

Goals

The objective of the project is to take advantage of machine learning and artificial intelligence
techniques to better understand the underlying data related to the movements of a soft, artificial

muscle. Beyond exploratory analysis, another objective of the project is to not only assess
existing algorithms related to data prediction, but also experiment with creating algorithms that
could assist in the prediction of further cycles pertaining to the given dataset.

Background

In order to better understand the project, you may like to familiarize yourself with the overall
research as it currently stands at the Creative Machines Lab as well as with mathematical and
algorithmic concepts used in this paper to retrieve both the necessary calculations and models
needed. You may refer to Appendix A for resources most pertinent to the lab, while the remainder
of this paper will discuss the background necessary to understand algorithms applied to the
dataset of cycles.

Literature Review

While the problem I intend to solve in regards to cycle breakpoints is isolated, the problem in
regards to cycle prediction, or rather prediction of next values in a dataset, is not. Advanced
machine learning algorithms that may take advantage of Bayesian or regressive concepts may be
used as a baseline in regards to forecasting, but such algorithms themselves do not predict next
values in a dataset. For instance, a Naive Bayes classifier will require that only one attribute in a
dataset be predicted upon whereas when it comes to forecasting, the prediction required is that of
an entire instance given previous instances. We can adopt the concept of training and testing sets
from such algorithms; however, must also find a way to extend predictions beyond single
attributes and beyond the length of a given dataset as well.

This is where time series forecasting comes into play. According to Brockwell and Davis, author
of Time Series: Theory and Methods, a time series is a set of observations x; with each one being
recorded at a specified time # [1]. The dataset we have containing 47 cycles matches this
definition in the sense that each instance corresponds to a specific recording in time.
Aforementioned machine learning approaches can be applied to such datasets representing a time
series problem.

Hassan and Nath, researchers at the University of Melbourne, developed a Hidden Markov
Model-based tool for time series forecasting in regards to stock market forecasting. Four input
features for a stock were considered: the opening price, the closing price, the highest price, and
the lowest price of the stock. The target price is the next day’s closing price. Hassan and Nath’s
tool yielded an R? value of 87.5%, indicating that the model adequately fit their given dataset [2].

In addition to Markov incorporation into time series analysis, Chris Chatfield, author of 7he
Analysis of Time Series, expands on an another approach in regards to prediction: constructing an
autoregression model. He discusses how its outputs, or predictions, are based on a linear
combination of input values. In its base case, the model assumes that the observations made at
the previous time steps are useful in predicting values in the next time steps as well. Since our
dataset is linearly separable and continuous, applying an autoregression model might be a good
start in regards to making predictions on top of the data that already exists. [3]

Jason Brownlee, the founding researcher at Machine Learning Mastery, introduces a predictive
approach involving a persistence algorithm in which predictions are based on simply the given
value in a previous time step rather than on multiple previous values. In predicting the monthly
number of shampoo sales over a three year period, Brownlee was able to retrieve next rows for
his given dataset that mimicked previous rows already present [4]. Such a model may also be
fitting for our particular dataset of cycles.

Methodology, Technical Approach, and Results

In this section, I will be discussing my methodology in regards to tackling both problems given
the dataset containing information related to the 47 cycles: one in regards to obtaining
breakpoints for each cycle, and the other in regards to predicting next cycles given values already
present in the dataset containing all 47 cycles. Before diving into the technical approach as well
as the results retrieved for each method, I will also provide a high-level explanation of the
dataset.

Dataset Information

Courtesy of Aslan Miriyev, a post-doctoral research scientist in the Creative Machines Lab, |
was provided with a dataset containing information pertaining to the movement of a soft,
artificial muscle [5]. The dataset itself contains 47 cycles in total; however, these cycles do not
represent a single instance (i.e. row) in our dataset. Instead, a single cycle can span over a couple
hundred of rows before terminating. The entire dataset itself actually contains 170,101 rows.
Only two columns are present, both of numerical value: one being the time represented in
seconds, and the other being the load (i.e. force of the muscle) represented in Newtons.

The first time value in the dataset starts at zero seconds, and following this it goes on to 0.0018
seconds and then, 0.1 seconds. After these initial values, each value in the time column now
increments by 0.1 seconds. The very last value in the time column, signaling the end of 47
cycles, is 16770.9 seconds.

The first load value in the dataset starts at 0.06729 Newtons. This represents the minimum value
starting the first cycle. Values following this will increase until a maximum value of about 130
Newtons is reached. After this value is reached, the pressure drops until the value once again
becomes close to zero; thus, starting the next cycle. This occurs 47 times in our dataset, with a
load value ending at 0.09558.

Obtaining Breakpoints for Each Cycle

As alluded to earlier, our dataset is continuous in regards to time; however, segmented in regards
to load. Therefore, in order to determine the start and end points for each cycle, I zoomed in on
the load column.

With prior knowledge that the pressure for each cycle starts around 0 and ends around 130, I can
presume that each cycle has a starting point and an ending point. In mathematical terms, I can
seek to find the local minima and local maxima for each cycle. According to Tri Lai, a
postdoctoral associate at the Institute for Mathematics and its Applications at the University of
Minnesota, a function has a local minimum at a certain point, p, if the function of p is less than
or equal to the values of the function for points near p. The same concept applies to the local
maximum; however, in this case, the function of p would be greater than or equal to the values of
the function for points near p [6].

Within programming itself, the most intuitive way to retrieve such values is to use a built-in
function. Python’s NumPy library has functions to derive local minima and local maxima using a
call to extrema, which retrieves the relative extrema in a dataset [7]. Applying this function to
our load values returns misleading results, as seen in Appendix B.

I then began to write a function on my own to calculate the local minima and maxima. I tried
varying approaches, all of which included iteration, conditionals, and self-defined functions. The
most optimal approach I could come up with ran in ©(n), or rather, linear time. The function is a
generative function that seeks to group results based on minimum and maximum values as
defined by conditionals which examine both the current value and the next value of the list
passed through. You may view the function in its entirety in Appendix C.

When passing in the load parameter to the function, however, the values returned still did not
represent the true minimum and maximum values. Though the function itself is implemented
correctly and returns expected values according to the rules implemented, the output is incorrect
because the load values in the dataset themselves oscillate. What is expected is that the first
value should start at zero and continually increase until 130. Then, continually decrease from 130
until zero. However, values tend to increase and decrease along the way.

For instance, take the first three values in our load column: 0.06729, 0.07128, and 0.05453.
Supposedly, the pressure value is supposed to increase after 0.06729; however, due to
oscillation, the values start to decrease well before reaching 130 Newtons at 0.05453. Below are
the first three outputs of the function:

Cycle: 1
Minimum value: -0.05887
Maximum value: 0.07505

Cycle: 2
Minimum value: 0.07159
Maximum value: 132.97716

Cycle: 3
Minimum value: 5.30435
Maximum value: 5.31258

As shown above, the values do not represent the true minimum and maximum values. In order to
fix this error, I attempted multiple experiments in regards to rounding values in Excel. The best
outcome that neared expected results turned out to be rounding values to the nearest whole
number. This was accomplished by using Excel’s ROUND function, specifying a value of zero.
Below are some arbitrary values from the load column and the values they round to, according to
the aforementioned function used:

0.51372 — 1
0.46894 — 0
2.49806 — 2
2.51084 — 3

By applying my self-constructed function to this new column and keeping track of the index of
the rounded values, I was able to map the corresponding index to the original values in the load
column. Below are the returned local minimum and local maximum results for the first three
cycles:

Cycle: 1
Minimum value: 0.51372
Maximum value: 132.54321

Cycle: 2
Minimum value: 0.50146
Maximum value: 132.57836

Cycle: 3
Minimum value: 0.50416
Maximum value: 131.58451

The minimum and maximum values for the above points are closer to the known minimum value
of zero and maximum value of 130 as they should be, so improvements have certainly been
made. After retrieving the minimum and maximum values for each cycle, I proceeded to
calculate the total time, heating time, and cooling time per cycle. The heating time for each cycle
starts at the same time index for the minimum load value and ends at the same time index for the
maximum load value. The cooling time for each cycle starts at the same time index for the
maximum load value and ends at the same time index for the minimum load value. This pattern
continues, cycle after cycle. The total time per cycle is simply the sum of the cooling time and
the heating time. Below I have included all criterias for the first three cycles:

Cycle: 1

Minimum value: 0.51372
Maximum value: 132.54321

Total time per cycle: 242.29998
Cooling time per cycle: 161.29998
Heating time per cycle: 80.9

Cycle: 2

Minimum value: 0.50146
Maximum value: 132.57836

Total time per cycle: 334.6
Cooling time per cycle: 262.80003
Heating time per cycle: 71.7

Cycle: 3

Minimum value: 0.50416
Maximum value: 131.58451
Total time per cycle: 289.2
Cooling time per cycle: 235.8
Heating time per cycle: 53.29994

You may find all criterias for all 47 cycles in Appendix D.

Predicting Next Cvcles: Time Series Forecasting in the Context of our Dataset

After obtaining breakpoints for each of the 47 cycles, the following task was to predict the next
three cycles. Miriyev then provided me with a dataset containing actual data for all 50 cycles, in
addition to the data I already have of the 47 cycles [8]. In order to predict the values for the next
three cycles, I employed two methods related to time series forecasting to build both an
autoregression model and a persistence model.

In order to perform time series forecasting, we must first have a dataset that is time-relevant.
Time series adds an “explicit order dependence” between observations: a time dimension. This
extra dimension can be considered both a constraint and a structure that provides extra source of
information [9]. I believe that the dataset we have for our 47 cycles is a time-relevant dataset
because it contains a sequence of observations that have taken place sequentially in time. The
only caveat is that prediction of the next instance may not be easy to come by as each next point
represents an instance in time over the actual timespan for a given cycle.

Our data for the 47 cycles currently looks like (note that both the x-axis and y-axis here represent
row indices up to 170,101 since this is the length of our dataset):

17500 4
— Time [Seconds]

15000 4 Load [Newtons]

12500 -

10000 4

Row Index

7500 4

5000 4

2500 A

0 4

0 25000 50000 75000 100000 125000 150000 175000
Row Index

Observing the above graph, we can see that the time column increments at each row, so it makes
sense that the time value i1s always increasing upward. We can see “peaks” and “valleys” in the
values for the load column. This also makes sense due the fact that we know that these values
oscillate between their minimum and maximum points.

—
5}
1=}

=
=
=]

Load [Newtons]

5 8 8

Load [Newtons]
& = &
= o @

i
5]

s
o

Predicting Next Cvycles: An Autoregression Model

I selected an autoregression model, a forecasting model, to assist in making predictions. An
autoregression model is viewed as a representation of a type of random process and can be used
to describe time-varying processes in a dataset [3]. I have chosen to train my model on 70% of
the data in the load column. When I increase or decrease this value, my model is not exactly
representative. At each timestep, a prediction is made using a fitted model specified on the load
parameter. I have included several visualizations below that present the results of my model. The
blue line represents the actual values in the test set whereas the pink lines represent the predicted
values. In each graph, the x-axis represents the row index and the y-axis represents the load.

[-—
=
=)

120 120

100 100

Load [Newtans]
g
Load [Newtons]

0 1000 2000 3000 2000 5000 0 1000 2000 3000 4000 5000
Time [Minutes] Time [Minutes]

10000 20000 30000 40000 50000
Time [Minutes]

Load [Newtons]
Load [Newtons]

o

* :Iome [Minutess(; N e ° 0 15I:]'lr‘ne [zgﬁ-nuteszléo % B0 ' . “:‘20[“'"“635] 600 BOO
The first visualization at the top-left corner shows all 51,030 values in the test set plotted as well
as all 51,030 values in the predicted output plotted. The second visualization in the top-middle
displays the curve of one cycle, extracted from the previous graph. Given the fact that the
overlap among the testing set and the predicted set is quite close, the third visualization at the
top-right corner displays the same graph as the second visualization albeit with varying line
thickness for the two sets. The fourth visualization in the bottom-left corner displays the first 100
values in both groups. Although the overlap between both groups may indicate that each
predicted point matches an actual point, the visualization in this case shows that an exact
matching for every point is not the case. In the following visualizations remaining, I expand from
100 points to 400 points in the fifth visualization and from 400 points to 900 points in the sixth
visualization to indicate a closer merge of points as row indices increase.

Lag values are one of the few parameters that can be tweaked in our model. In the final model, a
lag value of 30 was used; tweaking it to the extreme on both ends did little to improve our model
as a whole. As a final method of evaluation, I computed the mean-squared error for my model
which yielded a value of 0.001. The mean-squared error measures the average of the squares of
the errors or deviations (i.e. the difference between the estimator and what is estimated). It
measures the quality of an estimator, or in our case, the predicted set. Since values closer to zero
indicate a better model, we can conclude that our model-with a mean-squared error of 0.001—is a
good model.

Predicting Next Cycles: A Persistence Model

The autoregression model does well to predict values concurrently on top of values in our actual
test set. However, in regards to predicting next values beyond the values already in our dataset,
we may want to explore other forecasting models. I will be using the persistence algorithm to
implement one. According to Brownlee, the persistence algorithm uses values at a previous time
step to predict the expected outcome at the next time step [4]. In order to illustrate the algorithm
more clearly, I have included an example of the first few load values of our dataset and their
predicted values at the following time step.

L-1 L
0 NaN 0.06729
1 0.06729 0.07128
2 0.07128 0.05453
3 0.05453 0.00621
4 0.00621 0.00352

The column L contains the first few values in our load column pertaining to our dataset of 47
cycles. The column L-1 contains values that are one previous “time-step” ahead of L. In row 0,
there are no previous values that occur before 0.06729. Therefore, the previous value is NaN (i.e.
none). In row 1, the previous value before 0.07128 is 0.06729. Therefore, the 0.06729 is
indicated as the previous value in the column, L-1. The column L-1 is what is used to predict the
next rows in our dataset.

After delegating 66% of the dataset to be trained, predictions were made using the remaining test
set of 34%. I have graphed the results below, where the blue lines indicate the actual data and the
green lines indicate the predicted next rows:

140

120 1

=
=

Load [Mewtons]

MHNNVLWL AT

0 25000 50000 75000 100000 125000 150000 175000
Time [Minutes]

We can intuitively conclude that the model is naive given that the predicted values are based on
the L-1 values; however, a similar pattern to the actual data is certainly achieved as seen in the
visualization above. The mean-squared error was 0.006, which is decent metric considering this

naive approach.

In order to accomplish the task at hand of only predicting the next three cycles for our dataset of
47 cycles, examination of the prediction outputs as well as the dataset was required.

The last row of our dataset containing only the 47 cycles ended with these values:

Time: 16770.9
Load: 0.09558

In my algorithm above, my persistence model starts making predictions based on a random point
in the dataset (i.e. the starting point for the test set, which includes 34% of the data). This random
starting point happens to be 83.06224 for the load value, which is quite far off from 0.09558. In
order to know exactly where each cycle begins and ends, I have to know where each minimum
and maximum cycle begins and ends.

In using my generative function to determine the start and end points for each minimum and
maximum within the outputted predictions, I received a misleading output:

Cycle: 1

Minimum value: 83.06224
Maximum value: 99.87193

10

Cycle: 2
Minimum value: 100.04444000000001
Maximum value: 126.81127

Cycle: 3
Minimum value: 126.80696
Maximum value: 131.14229

The values above do not indicate the correct points, from what we already know of our dataset.
So, I decided to manually modify the returned predictions to indicate a start value closer to
0.09558 and not 83.06224. The first value immediately following 0.09558 was 0.97445, so I ran
my algorithm on the prediction set starting from this value. Again, results were not ideal:

Cycle: 1
Minimum value: 0.97445
Maximum value: 1.23071

Cycle: 2
Minimum value: 1.21348
Maximum value: 6.9386399999999995

Cycle: 3
Minimum value: 6.93382
Maximum value: 6.93382

After much trial and error, I decided to manually obtain the three cycles by going through the
data on my own. It took some time, but [was able to obtain the three cycles in this manner. The
final graph for the next three predicted cycles is below, where the x-axis represents time and the
y-axis represents load.

Next Three Cycles

Load [Newtons|

\

17e00 17300 ISIDD 18200

Time [Seconds]

11

Load [Newtons]

In comparing the predicted output against the remaining three cycles in our dataset containing 50
cycles overall, the results indicated a similar pattern as seen in the visualization below to the left.
However, the cycles are inverted at most points along the horizontal axis. The blue line indicates
the actual results from the dataset of the remaining three cycles, while the orange line indicates
the predicted outputs for the aforementioned cycles. Similar to the above visualization, the
x-axis represents time and the y-axis represents load. The graph below on the right shows the
actual values multiplied by -1 against the predicted values, indicating a close—but not
exact—overlap against the points pertaining to the actual three cycles.

Predicted vs. Actual i
redicted vs. Actua Actual (*-1) vs. Predicted

150

100

50

16600
-50

Load [Newtons]

-100

-150

Time [Seconds]

Time [Seconds]

The mean-squared error still remains at 0.006, despite the curve for the predicted results arriving

a little earlier in time than the curve for the actual results.

Conclusions and Future Work

Whereas the problem in regards to obtaining cycle breakpoints has been addressed, there is still
much work to be done in regards to predicting next values in our dataset so as to truly bring
artificial, muscle movement to life rather than leave it as stationary. The models presented in this
paper that fall under the category of time series forecasting yielded results that closely matched
our actual data points with a minimal mean-squared error; however, next values predicted either
overlap the test set (as seen using the autoregression model) or replace it entirely in the output

(as seen using the persistence model).

In comparing the autoregression model to the persistence model, it is difficult to say which one
exceeds the other in performance given a difference of only 0.005 in regards to the mean-squared
error. In the future, we may or may not want to incorporate both models. Nonetheless, it is
necessary to not only tweak these models so as to achieve a higher accuracy, but also look more
closely into combining these models against other methods that seek to add values onto our
dataset rather than on top of a test set or in replacement of a test set. Despite such improvements

12

to be made, the work in this paper provides a starting point for further exploring data prediction
by means of time series forecasting.

13

Bibliography

[1] Brockwell, Peter J., Davis, Richard A. “Examples of Time Series.” Time Series.: Theories and
Methods. Springer. 1987. Retrieved: Dec-21-2017.

[2] Md. Rafiul Hassan., Baikunth Nath. “Stock Market Forecasting Using Hidden Markov
Model: A New Approach.” Intelligent Systems Design and Applications. 2005. Retrieved:
Dec-21-2017.

[3] Chatfield, Chris. “Fractional Differencing and Long-Memory Models.” The Analysis of Time
Series. 2003. Taylor & Francis Group. Retrieved: Dec-21-2017.

[4] Brownlee, Jason, “How to Make Baseline Predictions for Time Series Forecasting with

Python.” Machine Learning Mastery. Retrieved: Dec-18-2017.

[5] Provided by: Miriyev, Aslan. “47 cycles.csv.” Retrieved: Dec-18-2017.

[6] Lai, Tri. “Local Maxima and Minima.” University of Minnesota. Retrieved: Dec-18-2017.
[7] “scipy.signal.argrelextrema.” SciPy.org. Retrieved: Dec-18-2017.

[8] Provided by: Miriyev, Aslan. “50_cycles.csv.” Retrieved: Dec-18-2017.

[9] Brownlee, Jason. “What is Time Series Forecasting?” Machine Learning Mastery. Retrieved:
Dec-18-2017.

14

https://books.google.com/books?hl=en&lr=&id=DJ_lBwAAQBAJ&oi=fnd&pg=PR7&dq=time+series+prediction&ots=AcrBfK2DjW&sig=f4g_0Go1us4c7MbvUDhR_KE8M0c#v=onepage&q=time%20series%20prediction&f=false
http://ieeexplore.ieee.org/document/1578783/
http://ieeexplore.ieee.org/document/1578783/
https://books.google.com/books?hl=en&lr=&id=qKzyAbdaDFAC&oi=fnd&pg=PP1&dq=research+autoregression+model&ots=syvYebVBPm&sig=SsACP_t8kj3TNXw8TvdUh6_xa2I#v=onepage&q=research%20autoregression%20model&f=false
https://machinelearningmastery.com/persistence-time-series-forecasting-with-python/
https://machinelearningmastery.com/persistence-time-series-forecasting-with-python/
https://drive.google.com/drive/u/1/folders/1sSYdfFyo1MC8bZSgbsGPnqELTX0I8Oc0
https://www.ima.umn.edu/~tmlai/M119-Section41.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelextrema.html
https://drive.google.com/drive/u/1/folders/1sSYdfFyo1MC8bZSgbsGPnqELTX0I8Oc0
https://machinelearningmastery.com/time-series-forecasting/

Appendix A

1. Creative Machines Lab point people

a.
b.

Hod Lipson - hod.lipson@columbia.edu

Aslan Miriyev - aslan.miriyev(@columbia.edu

2. Paper point person

a.

Navraj Narula - nnn2112@columbia.edu

3. Soft material for soft actuators

a.

This is a paper by Aslan Miriyev, Kenneth Stack, and Hod Lipson recently
published in the Nature Communications journal. In order to get a better idea of
the material used to design the muscle as well as learn about challenges in soft
robotics, it would be good to review this paper for background
knowledge—especially to understand the context behind the given dataset
discussed in this paper.

15

mailto:hod.lipson@columbia.edu
mailto:aslan.miriyev@columbia.edu
mailto:nnn2112@columbia.edu
https://www.nature.com/articles/s41467-017-00685-3

Appendix B

In [7]: argrelextrema(lst, np.less_equal)
out[7]1: (array(I 0, 4, 7,

Out[8]: (array(l[1, Dy 8,

., 170090, 170094, 170097]),)

In [8]: argrelextrema(lst, np.greater_equal)
., 170093, 170096, 170100]1),)

The values returned represent array indices. Given such indices returned, we know that using

NumPy’s built-in extrema function is not a valid option for finding local minimums and

maximums since they should be at least 130 values apart.

16

Appendix C

def get groups(lst):

up = False
for i, (u, v) in enumerate(zip(lst, lst[1:1)):
if up:
if v < u:
yield 'End', i, u
up = False
else:
if v > u:
yield 'Start', i, u
up = True
if up:

yield 'End', i + 1, lst[-1]

My generator function to retrieve local minimum and maximum values is displayed in the image

above. In our case, /st would be the list containing load values to be passed in as a parameter to

the function.

17

Cycle: 1

Minimum value: 0.51372
Maximum value: 132.54321

Total time per cycle: 242.29998
Cooling time per cycle: 161.29998
Heating time per cycle: 80.9

Cycle: 2

Minimum value: 0.50146
Maximum value: 132.57836

Total time per cycle: 334.6
Cooling time per cycle: 262.80003
Heating time per cycle: 71.7

Cycle: 3

Minimum value: 0.50416
Maximum value: 131.58451
Total time per cycle: 289.2
Cooling time per cycle: 235.8
Heating time per cycle: 53.29994

Cycle: 4

Minimum value: 1.50691
Maximum value: 131.54046

Total time per cycle: 344.39994
Cooling time per cycle: 249.29988
Heating time per cycle: 95.0

Cycle: 5

Minimum value: 0.50848
Maximum value: 133.5142

Total time per cycle: 322.99988
Cooling time per cycle: 250.69988
Heating time per cycle: 72.2

Cycle: 6

Minimum value: 0.50238
Maximum value: 132.6618

Total time per cycle: 323.2
Cooling time per cycle: 251.2
Heating time per cycle: 71.89988

Cycle: 7

Minimum value: 0.52059
Maximum value: 132.69964

Total time per cycle: 313.00012
Cooling time per cycle: 252.90012

Appendix D

Heating time per cycle: 60.0

Cycle: 8

Minimum value: 0.5009
Maximum value: 132.63109
Total time per cycle: 311.3
Cooling time per cycle: 260.8
Heating time per cycle: 50.4

Cycle: 9

Minimum value: 0.52352
Maximum value: 131.53477
Total time per cycle: 274.0

Cooling time per cycle: 224.0
Heating time per cycle: 49.9

Cycle: 10

Minimum value: 0.50309
Maximum value: 131.55767
Total time per cycle: 291.3
Cooling time per cycle: 222.3
Heating time per cycle: 68.9

Cycle: 11

Minimum value: 0.52487
Maximum value: 131.57019

Total time per cycle: 292.60025
Cooling time per cycle: 222.80025
Heating time per cycle: 69.70025

Cycle: 12

Minimum value: 0.53089
Maximum value: 132.52823
Total time per cycle: 297.59975
Cooling time per cycle: 226.0
Heating time per cycle: 71.5

Cycle: 13

Minimum value: 0.50404
Maximum value: 131.56165
Total time per cycle: 280.0
Cooling time per cycle: 208.5
Heating time per cycle: 71.39975

Cycle: 14
Minimum value: 1.51977
Maximum value: 131.67785

Total time per cycle: 308.20025
Cooling time per cycle: 217.8
Heating time per cycle: 90.3

Cycle: 15

Minimum value: 0.52461
Maximum value: 131.58631
Total time per cycle: 293.5995
Cooling time per cycle: 220.5995
Heating time per cycle: 72.9

Cycle: 16

Minimum value: 0.50027
Maximum value: 131.61126
Total time per cycle: 296.7

Cooling time per cycle: 223.5
Heating time per cycle: 73.1

Cycle: 17

Minimum value: 0.50253
Maximum value: 130.64782
Total time per cycle: 295.4
Cooling time per cycle: 221.2
Heating time per cycle: 74.0995

Cycle: 18

Minimum value: 0.5016
Maximum value: 131.55186
Total time per cycle: 300.8
Cooling time per cycle: 225.4
Heating time per cycle: 75.3

Cycle: 19

Minimum value: 0.50355
Maximum value: 131.64112
Total time per cycle: 301.1
Cooling time per cycle: 223.8
Heating time per cycle: 77.1995

Cycle: 20

Minimum value: 0.50285
Maximum value: 130.7148

Total time per cycle: 278.5
Cooling time per cycle: 201.5995
Heating time per cycle: 76.8005

Cycle: 21

Minimum value: 1.50497
Maximum value: 131.60804
Total time per cycle: 339.3995
Cooling time per cycle: 247.3995
Heating time per cycle: 91.8995

Cycle: 22

Minimum value: 0.50203
Maximum value: 130.68189
Total time per cycle: 232.3995
Cooling time per cycle: 173.0
Heating time per cycle: 59.2995

Cycle: 23

Minimum value: 4.50012
Maximum value: 130.50085
Total time per cycle: 364.5

Cooling time per cycle: 230.7005
Heating time per cycle: 133.7

Cycle: 24

Minimum value: 0.51336
Maximum value: 131.53273
Total time per cycle: 310.5
Cooling time per cycle: 226.9
Heating time per cycle: 83.5

Cycle: 25

Minimum value: 0.52311
Maximum value: 130.55855
Total time per cycle: 316.3
Cooling time per cycle: 231.5
Heating time per cycle: 84.6995

Cycle: 26

Minimum value: 0.50607
Maximum value: 131.51486
Total time per cycle: 328.0
Cooling time per cycle: 241.3005
Heating time per cycle: 86.6

Cycle: 27

Minimum value: 0.52793
Maximum value: 131.57064
Total time per cycle: 311.7
Cooling time per cycle: 220.7
Heating time per cycle: 90.9

Cycle: 28

Minimum value: 0.50275
Maximum value: 131.50829
Total time per cycle: 300.599
Cooling time per cycle: 210.699
Heating time per cycle: 89.7995

Cycle: 29

Minimum value: 1.51489
Maximum value: 131.51

Total time per cycle: 334.899
Cooling time per cycle: 228.699
Heating time per cycle: 106.1

Cycle: 30

Minimum value: 0.50042
Maximum value: 131.50921
Total time per cycle: 326.5

Cooling time per cycle: 228.2
Heating time per cycle: 98.2

Cycle: 31

Minimum value: 0.51261
Maximum value: 130.71489
Total time per cycle: 323.2
Cooling time per cycle: 222.0
Heating time per cycle: 101.1

Cycle: 32

Minimum value: 1.53942
Maximum value: 130.54335
Total time per cycle: 359.301
Cooling time per cycle: 240.801
Heating time per cycle: 118.401

Cycle: 33

Minimum value: 0.51392
Maximum value: 130.5877
Total time per cycle: 342.8
Cooling time per cycle: 232.0
Heating time per cycle: 110.7

Cycle: 34

Minimum value: 1.5089
Maximum value: 131.5352
Total time per cycle: 400.6
Cooling time per cycle: 272.3
Heating time per cycle: 128.199

Cycle: 35

Minimum value: -0.49218
Maximum value: 130.50038
Total time per cycle: 361.301
Cooling time per cycle: 255.5
Heating time per cycle: 105.701

Cycle: 36

Minimum value: 0.51553
Maximum value: 130.51911
Total time per cycle: 398.3
Cooling time per cycle: 271.3
Heating time per cycle: 126.9

Cycle: 37

Minimum value: 0.51303
Maximum value: 130.56107
Total time per cycle: 422.199

Cooling time per cycle: 287.5
Heating time per cycle: 134.6

Cycle: 38

Minimum value: 0.5018
Maximum value: 130.53618
Total time per cycle: 441.0
Cooling time per cycle: 297.101
Heating time per cycle: 143.8

Cycle: 39

Minimum value: 0.5113
Maximum value: 130.53745
Total time per cycle: 459.9
Cooling time per cycle: 309.101
Heating time per cycle: 150.7

Cycle: 40

Minimum value: 0.51186
Maximum value: 129.57251
Total time per cycle: 466.4
Cooling time per cycle: 305.7
Heating time per cycle: 160.599

Cycle: 41

Minimum value: 0.51316
Maximum value: 130.57625
Total time per cycle: 486.099
Cooling time per cycle: 318.0
Heating time per cycle: 168.0

Cycle: 42

19

Minimum value: 0.50586
Maximum value: 130.56697
Total time per cycle: 510.2
Cooling time per cycle: 335.5

Heating time per cycle: 174.599

Cycle: 43

Minimum value: 0.51402
Maximum value: 130.55333
Total time per cycle: 477.2
Cooling time per cycle: 320.2
Heating time per cycle: 156.9

Cycle: 44

Minimum value: 1.50876
Maximum value: 130.53639
Total time per cycle: 521.201

Cooling time per cycle: 321.201
Heating time per cycle: 199.901

Cycle: 45

Minimum value: 1.50364
Maximum value: 130.5965
Total time per cycle: 540.301

Cooling time per cycle: 333.5
Heating time per cycle: 206.7

Cycle: 46

Minimum value: 0.5051
Maximum value: 130.5785
Total time per cycle: 562.2

Cooling time per cycle: 358.8

Heating time per cycle: 203.299

Cycle: 47

Minimum value: 0.50993
Maximum value: 129.5121
Total time per cycle: 531.501
Cooling time per cycle: 347.5
Heating time per cycle: 183.9

20

