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Abstract 

 
Abhijit Naskar,  author  of  The Art  of Neuroscience in  Everything , once said: “Artificial 
intelligence  can  be a supplement to  human  insight,  not substitute.” Working  with a dataset 
exceeding  a hundred  thousand  rows  can  be troublesome for  any  human  to  tackle in  a timely 
manner; however,  given  the fact that a human  has  made a computer  aware of  meaning  associated 
with the unfamiliar  content it needs  to  parse,  a machine  can  deliver  outputs  both  quickly  and 
continuously.  
 
During  the course of  this  semester,  I  worked  to  help  the programs  I  built understand  the meaning 
behind  a large dataset containing  information  pertaining  to  the time and  load  of  47 cycles  related 
to  the movement of  a soft, artificial  muscle.  
 
In  mathematically  breaking  down the dataset,  I  was able to  obtain  the start point for  each  cycle, 
end  point for  each  cycle,  the total time per  cycle,  the heating  time per  cycle,  and  the cooling  time 
per  cycle.  After  providing  this  narration  for  my  dataset,  I  was then  able to  think  more critically 
about how  to  predict the next three cycles  in  my  dataset.  By applying  the concept of  time series 
forecasting,  I  was able to  build  both  an  autoregression  model and  a persistence model in  order 
predict next values. 
 
Despite improvements  to  be made in  regards  to  precision,  my  results  for  each  task  indicate  a 
close correlation  with the actual  results. 
 
Goals 

 

The objective  of  the project is  to  take advantage  of  machine  learning  and  artificial  intelligence 
techniques  to  better  understand  the underlying  data related  to  the movements  of  a soft, artificial 
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muscle.  Beyond  exploratory  analysis,  another  objective  of  the project is  to  not only  assess 
existing  algorithms  related  to  data prediction,  but also  experiment  with creating  algorithms  that 
could  assist  in  the prediction  of  further  cycles  pertaining  to  the given  dataset.  
 
Background 

 

In  order  to  better  understand  the project,  you may  like to  familiarize  yourself  with the overall 
research  as  it currently  stands  at the Creative  Machines  Lab  as  well as  with mathematical  and 
algorithmic  concepts  used  in  this  paper  to  retrieve  both  the necessary  calculations  and  models 
needed.  You may  refer  to  Appendix A for  resources  most pertinent  to  the lab,  while the remainder 
of  this  paper  will discuss  the background  necessary  to  understand  algorithms  applied  to  the 
dataset of  cycles. 
 
Literature Review 

 

While the problem I  intend  to  solve in  regards  to  cycle breakpoints  is  isolated,  the problem in 
regards  to  cycle prediction,  or  rather  prediction  of  next values  in  a dataset,  is  not.  Advanced 
machine  learning  algorithms  that may  take advantage  of  Bayesian  or  regressive concepts  may  be 
used  as  a baseline in  regards  to  forecasting,  but such  algorithms  themselves  do not predict next 
values  in  a dataset.  For instance,  a Naive Bayes  classifier  will require that only  one attribute  in  a 
dataset be predicted  upon whereas  when  it comes  to  forecasting,  the prediction  required  is  that of 
an  entire instance given  previous  instances.  We can  adopt the concept of  training  and  testing  sets 
from such  algorithms; however,  must also  find  a way to  extend  predictions  beyond  single 
attributes  and  beyond  the length  of  a given  dataset as  well. 
 
This  is  where time series  forecasting  comes  into  play.  According  to  Brockwell and  Davis,  author 
of  Time Series:  Theory and Methods , a time series  is  a set of  observations  xi with each  one being 
recorded  at a specified  time t [1].  The dataset we have containing  47 cycles  matches  this 
definition  in  the sense that each  instance corresponds  to  a specific recording  in  time. 
Aforementioned  machine  learning  approaches  can  be applied  to  such  datasets  representing  a time 
series  problem.  
 
Hassan and  Nath,  researchers  at the University  of  Melbourne,  developed  a Hidden  Markov 
Model-based  tool for  time series  forecasting  in  regards  to  stock  market forecasting.  Four input 
features  for  a stock  were considered: the opening  price,  the closing  price,  the highest price,  and 
the lowest price of  the stock.  The target price is  the next day’s  closing  price.  Hassan and  Nath’s 
tool yielded  an  R2 value of  87.5%,  indicating  that the model adequately  fit their  given  dataset [2].  
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In  addition  to  Markov  incorporation  into  time series  analysis,  Chris  Chatfield,  author  of  The 

Analysis  of Time Series , expands  on an  another  approach  in  regards  to  prediction:  constructing  an 
autoregression  model.  He discusses  how  its  outputs,  or  predictions,  are based  on a linear 
combination  of  input values.  In  its  base case,  the model assumes  that the observations  made at 
the previous  time steps  are useful in  predicting  values  in  the next time steps  as  well. Since our 
dataset is  linearly  separable and  continuous,  applying  an  autoregression  model might be a good 
start in  regards  to  making  predictions  on top  of  the data that already  exists.  [3]  
 
Jason Brownlee,  the founding  researcher  at Machine Learning  Mastery,  introduces  a predictive 
approach  involving  a persistence algorithm in  which  predictions  are based  on simply  the given 
value in  a previous  time step rather  than  on multiple  previous  values.  In  predicting  the monthly 
number  of  shampoo  sales over  a three year  period,  Brownlee was able to  retrieve  next rows  for 
his  given  dataset that mimicked  previous  rows  already  present [4].  Such a model may  also  be 
fitting  for  our  particular  dataset of  cycles. 

 
Methodology,  Technical Approach, and  Results 

 

In  this  section,  I  will be discussing my  methodology  in  regards  to  tackling  both  problems  given 
the dataset containing  information  related  to  the 47 cycles: one in  regards  to  obtaining 
breakpoints  for  each  cycle,  and  the other  in  regards  to  predicting  next cycles  given  values  already 
present in  the dataset containing  all 47 cycles.  Before diving  into  the technical  approach  as  well 
as  the results  retrieved  for  each  method,  I  will also  provide a high-level explanation  of  the 
dataset. 
 
Dataset Information  

 
Courtesy  of  Aslan Miriyev,  a post-doctoral research  scientist in  the Creative Machines  Lab,  I 
was provided  with a dataset containing  information  pertaining  to  the movement of  a soft, 
artificial  muscle [5].  The dataset itself  contains  47 cycles  in  total; however,  these cycles  do not 
represent a single instance (i.e.  row) in  our  dataset.  Instead,  a single cycle can  span  over  a couple 
hundred  of  rows  before terminating.  The entire dataset itself  actually  contains  170,101 rows. 
Only two  columns  are present,  both  of  numerical  value: one being  the time represented  in 
seconds,  and  the other  being  the load  (i.e.  force of  the muscle)  represented  in  Newtons. 
 
The first time value in  the dataset starts  at zero  seconds,  and  following  this  it goes  on to  0.0018 
seconds  and  then,  0.1 seconds.  After  these initial  values,  each  value in  the time column  now 
increments  by 0.1 seconds.  The very  last  value in  the time column,  signaling  the end  of  47 
cycles,  is  16770.9 seconds.  
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The first load  value in  the dataset starts  at 0.06729 Newtons. This  represents  the minimum value 
starting  the first cycle.  Values  following  this  will increase until a maximum value of  about 130 
Newtons  is  reached.  After  this  value is  reached,  the pressure drops  until the value once again 
becomes  close to  zero; thus, starting  the next cycle.  This  occurs  47 times  in  our  dataset,  with a 
load  value ending  at 0.09558. 
 
Obtaining  Breakpoints  for  Each  Cycle 

 

As  alluded  to  earlier,  our  dataset is  continuous  in  regards  to  time; however,  segmented  in  regards 
to  load.  Therefore,  in  order  to  determine  the start and  end  points  for  each  cycle,  I  zoomed  in  on 
the load  column. 
 
With  prior  knowledge that the pressure for  each  cycle starts  around  0 and  ends  around  130, I  can 
presume that each  cycle has  a starting  point and  an  ending  point.  In  mathematical  terms,  I  can 
seek to  find  the local minima and  local maxima for  each  cycle.  According  to  Tri Lai,  a 
postdoctoral associate at the Institute for  Mathematics  and  its  Applications  at the University  of 
Minnesota,  a function  has  a local minimum at a certain  point,  p, if  the function  of  p is  less  than 
or  equal to  the values  of  the function  for  points  near  p. The same concept applies  to  the local 
maximum;  however,  in  this  case,  the function  of  p would be greater  than  or  equal to  the values  of 
the function  for  points  near  p [6]. 
 
Within  programming  itself,  the most intuitive  way to  retrieve  such  values  is  to  use a built-in 
function.  Python’s  NumPy library  has  functions  to  derive local minima and  local maxima using a 
call to  extrema , which  retrieves  the relative  extrema  in  a dataset [7].  Applying  this  function  to 
our  load  values  returns  misleading  results,  as  seen in  Appendix B. 
 
I  then  began  to  write a function  on my  own to  calculate  the local minima and  maxima.  I  tried 
varying  approaches,  all of  which  included  iteration,  conditionals,  and  self-defined  functions.  The 
most optimal approach  I  could  come up  with ran  in  ϴ(n),  or  rather,  linear  time.  The function  is  a 
generative  function  that seeks  to  group  results  based  on minimum and  maximum values  as 
defined  by conditionals  which  examine  both  the current value and  the next value of  the list 
passed  through.  You may  view  the function  in  its  entirety  in  Appendix C. 
 
When  passing in  the load  parameter  to  the function,  however,  the values  returned  still did  not 
represent the true minimum and  maximum values.  Though  the function  itself  is  implemented 
correctly  and  returns  expected  values  according  to  the rules  implemented,  the output is  incorrect 
because the load  values  in  the dataset themselves  oscillate.  What is  expected  is  that the first 
value should start at zero  and  continually  increase until 130. Then,  continually  decrease from 130 
until zero.  However,  values  tend  to  increase and  decrease  along  the way.  
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For instance,  take the first three values  in  our  load  column: 0.06729,  0.07128, and  0.05453. 
Supposedly, the pressure value is  supposed to  increase after  0.06729; however,  due to 
oscillation,  the values  start to  decrease  well before reaching  130 Newtons  at 0.05453. Below  are 
the first three outputs  of  the function: 
 
Cycle: 1 
Minimum value: -0.05887 
Maximum value: 0.07505 
 
Cycle: 2 
Minimum value: 0.07159 
Maximum value: 132.97716 
 
Cycle: 3 
Minimum value: 5.30435 
Maximum value: 5.31258 
 
As  shown above,  the values  do not represent the true minimum and  maximum values.  In  order  to 
fix  this  error,  I  attempted  multiple  experiments  in  regards  to  rounding  values  in  Excel.  The best 
outcome that neared  expected  results  turned  out to  be rounding  values  to  the nearest whole 
number.  This  was accomplished  by using Excel’s  ROUND  function,  specifying  a value of  zero. 
Below  are some arbitrary  values  from the load  column  and  the values  they  round  to,  according  to 
the aforementioned  function  used: 
 
0.51372 → 1 
0.46894 → 0 
2.49806 → 2 
2.51084 → 3 
 
By applying  my  self-constructed  function  to  this  new  column  and  keeping  track  of  the index  of 
the rounded  values,  I  was able to  map  the corresponding  index  to  the original values  in  the load 
column.  Below  are the returned  local minimum and  local maximum results  for  the first three 
cycles: 
 
Cycle: 1 
Minimum value: 0.51372 
Maximum value: 132.54321 
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Cycle: 2 
Minimum value: 0.50146 
Maximum value: 132.57836 
 
Cycle: 3 
Minimum value: 0.50416 
Maximum value: 131.58451 
 
The minimum and  maximum values  for  the above points  are closer  to  the known minimum value 
of  zero  and  maximum value of  130 as  they  should be,  so improvements  have certainly  been 
made.  After  retrieving  the minimum and  maximum values  for  each  cycle,  I  proceeded  to 
calculate  the total time,  heating  time,  and  cooling  time per  cycle.  The heating  time for  each  cycle 
starts  at the same time index  for  the minimum load  value and  ends  at the same time index  for  the 
maximum load  value.  The cooling  time for  each  cycle starts  at the same time index  for  the 
maximum load  value and  ends  at the same time index  for  the minimum load  value.  This  pattern 
continues,  cycle after  cycle.  The total time per  cycle is  simply  the sum of  the cooling  time and 
the heating  time.  Below  I  have included  all criterias  for  the first three cycles: 
 
Cycle: 1 
Minimum value: 0.51372 
Maximum value: 132.54321 
Total time per  cycle:  242.29998 
Cooling  time per  cycle:  161.29998 
Heating  time per  cycle:  80.9 
 
Cycle: 2 
Minimum value: 0.50146 
Maximum value: 132.57836 
Total time per  cycle:  334.6 
Cooling  time per  cycle:  262.80003 
Heating  time per  cycle:  71.7 
 
Cycle: 3 
Minimum value: 0.50416 
Maximum value: 131.58451 
Total time per  cycle:  289.2 
Cooling  time per  cycle:  235.8 
Heating  time per  cycle:  53.29994 
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You may  find  all criterias  for  all 47 cycles  in  Appendix D . 
 
Predicting  Next Cycles:  Time Series  Forecasting  in  the Context of our  Dataset 

 

After  obtaining  breakpoints  for  each  of  the 47 cycles,  the following  task  was to  predict the next 
three cycles.  Miriyev  then  provided  me with a dataset containing  actual data for  all 50 cycles,  in 
addition  to  the data I  already  have of  the 47 cycles  [8].  In  order  to  predict the values  for  the next 
three cycles,  I  employed  two  methods  related  to  time series  forecasting  to  build  both  an 
autoregression  model and  a persistence model.  
 
In  order  to  perform time series  forecasting,  we must first have a dataset that is  time-relevant. 
Time series  adds  an  “explicit  order  dependence”  between  observations: a time dimension.  This 
extra dimension  can  be considered  both  a constraint and  a structure that provides  extra source of 
information  [9].  I  believe  that the dataset we have for  our  47 cycles  is  a time-relevant  dataset 
because it contains  a sequence of  observations  that have taken  place sequentially  in  time.  The 
only  caveat  is  that prediction  of  the next instance may  not be easy  to  come by as  each  next point 
represents  an  instance in  time over  the actual  timespan  for  a given  cycle. 
 
Our data for  the 47 cycles  currently  looks  like (note that both  the x-axis  and  y-axis  here represent 
row  indices  up to  170,101 since this  is  the length  of  our  dataset): 
 
 
 
 
 
 
 
 
 
 
 
 
 
Observing  the above graph,  we can  see that the time column  increments  at each  row, so it makes 
sense that the time value is  always  increasing  upward.  We can  see “peaks” and  “valleys”  in  the 
values  for  the load  column.  This  also  makes  sense due the fact that we know  that these values 
oscillate  between  their  minimum and  maximum points. 
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Predicting  Next Cycles:  An  Autoregression  Model 
 
I  selected an  autoregression  model,  a forecasting  model,  to  assist  in  making  predictions.  An 
autoregression  model is  viewed  as  a representation  of  a type of  random process  and  can  be used 
to  describe time-varying  processes  in  a dataset [3].  I  have chosen  to  train  my  model on 70%  of 
the data in  the load  column.  When  I  increase or  decrease  this  value,  my  model is  not exactly 
representative.  At each  timestep,  a prediction  is  made using a fitted  model specified  on the load 
parameter.  I  have included  several visualizations  below  that present the results  of  my  model.  The 
blue line represents  the actual  values  in  the test  set whereas  the pink  lines  represent the predicted 
values.  In  each  graph,  the x-axis  represents  the row  index  and  the y-axis  represents  the load. 

The first visualization  at the top-left corner  shows  all 51,030 values  in  the test  set plotted  as  well 
as  all  51,030 values  in  the predicted  output plotted.  The second  visualization  in  the top-middle 
displays  the curve of  one cycle,  extracted  from the previous  graph.  Given  the fact that the 
overlap  among  the testing  set and  the predicted  set is  quite close,  the third  visualization  at the 
top-right corner  displays  the same graph  as  the second  visualization  albeit with varying  line 
thickness  for  the two  sets. The fourth  visualization  in  the bottom-left  corner  displays  the first 100 
values  in  both  groups. Although  the overlap  between  both  groups  may  indicate  that each 
predicted  point matches  an  actual  point,  the visualization  in  this  case  shows  that an  exact 
matching  for  every  point is  not the case.  In  the following  visualizations  remaining,  I  expand  from 
100 points  to  400 points  in  the fifth  visualization  and  from 400 points  to  900 points  in  the sixth 
visualization  to  indicate  a closer  merge of  points  as  row  indices  increase.  
 

8 



Lag  values  are one of  the few  parameters  that can  be tweaked  in  our  model.  In  the final model,  a 
lag  value of  30 was used; tweaking  it to  the extreme  on both  ends  did  little to  improve our  model 
as  a whole.  As  a final method  of  evaluation,  I  computed  the mean-squared  error  for  my  model 
which  yielded  a value of  0.001. The mean-squared  error  measures  the average of  the squares  of 
the errors  or  deviations  (i.e.  the difference  between  the estimator  and  what is  estimated).  It 
measures  the quality  of  an  estimator,  or  in  our  case,  the predicted  set. Since values  closer  to  zero 
indicate  a better  model,  we can  conclude that our  model–with  a mean-squared  error  of  0.001–is  a 
good model. 
 
Predicting  Next Cycles:  A Persistence Model 

 

The autoregression  model does  well to  predict values  concurrently  on top  of  values  in  our  actual 
test  set. However,  in  regards  to  predicting  next values  beyond  the values  already  in  our  dataset, 
we may  want to  explore other  forecasting  models.  I  will be using the persistence algorithm to 
implement  one.  According  to  Brownlee,  the persistence algorithm uses  values  at a previous  time 
step to  predict the expected  outcome at the next time step [4].  In  order  to  illustrate  the algorithm 
more clearly,  I  have included  an  example  of  the first few  load  values  of  our  dataset and  their 
predicted  values  at the following  time step. 
 
          L-1            L 
0      NaN   0.06729 
1  0.06729  0.07128 
2  0.07128  0.05453 
3  0.05453  0.00621 
4  0.00621  0.00352 
 
The column  L contains  the first few  values  in  our  load  column  pertaining  to  our  dataset of  47 
cycles.  The column  L-1  contains  values  that are one previous  “time-step”  ahead  of  L.  In  row  0, 
there are no previous  values  that occur  before 0.06729. Therefore,  the previous  value is  NaN (i.e. 
none).  In  row  1, the previous  value before 0.07128 is  0.06729. Therefore,  the 0.06729 is 
indicated  as  the previous  value in  the column,  L-1.  The column  L-1  is  what is  used  to  predict the 
next rows  in  our  dataset.  
 
After  delegating  66%  of  the dataset to  be trained,  predictions  were made using the remaining  test 
set of  34%.  I  have graphed  the results  below,  where the blue lines  indicate  the actual data and  the 
green  lines  indicate  the predicted  next rows: 
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We can  intuitively  conclude that the model is  naive given  that the predicted  values  are based  on 
the L-1  values; however,  a similar pattern  to  the actual  data is  certainly  achieved  as  seen in  the 
visualization  above.  The mean-squared  error  was 0.006, which  is  decent metric considering  this 
naive approach. 
 
In  order  to  accomplish  the task  at hand  of  only  predicting  the next three cycles  for  our  dataset of 
47 cycles,  examination  of  the prediction  outputs  as  well as  the dataset was required. 
 
The last  row  of  our  dataset containing  only  the 47 cycles  ended  with these values: 
 
Time: 16770.9 
Load: 0.09558 
 
In  my  algorithm above,  my  persistence model starts  making  predictions  based  on a random point 
in  the dataset (i.e.  the starting  point for  the test  set, which  includes  34%  of  the data).  This  random 
starting  point happens  to  be 83.06224 for  the load  value,  which  is  quite far  off  from 0.09558. In 
order  to  know  exactly  where each  cycle begins  and  ends,  I  have to  know  where each  minimum 
and  maximum cycle begins  and  ends.  
 
In  using my  generative  function  to  determine  the start and  end  points  for  each  minimum and 
maximum within  the outputted  predictions,  I  received  a misleading  output: 
 
Cycle: 1 
Minimum value: 83.06224 
Maximum value: 99.87193 
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Cycle: 2 
Minimum value: 100.04444000000001 
Maximum value: 126.81127 
 
Cycle: 3 
Minimum value: 126.80696 
Maximum value: 131.14229 
 
The values  above do not indicate  the correct points,  from what we already  know  of  our  dataset. 
So, I  decided  to  manually  modify  the returned  predictions  to  indicate  a start value closer  to 
0.09558 and  not 83.06224. The first value immediately  following  0.09558 was 0.97445, so I  ran 
my  algorithm on the prediction  set starting  from this  value.  Again,  results  were not ideal: 
 
Cycle: 1 
Minimum value: 0.97445 
Maximum value: 1.23071 
 
Cycle: 2 
Minimum value: 1.21348 
Maximum value: 6.9386399999999995 
 
Cycle: 3 
Minimum value: 6.93382 
Maximum value: 6.93382 
 
After  much  trial and  error,  I  decided  to  manually  obtain  the three cycles  by going  through  the 
data on my  own. It took  some time,  but I  was able to  obtain  the three cycles  in  this  manner.  The 
final graph  for  the next three predicted  cycles  is  below,  where the x-axis  represents  time and  the 
y-axis  represents  load. 
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In  comparing  the predicted  output against the remaining  three cycles  in  our  dataset containing  50 
cycles  overall,  the results  indicated  a similar pattern  as  seen in  the visualization  below  to  the left. 
However,  the cycles  are inverted  at most points  along  the horizontal axis.  The blue line indicates 
the actual  results  from the dataset of  the remaining  three cycles,  while the orange line indicates 
the predicted  outputs  for  the aforementioned  cycles.   Similar to  the above visualization,  the 
x-axis  represents  time and  the y-axis  represents  load.  The graph  below  on the right shows  the 
actual  values  multiplied  by -1  against the predicted  values,  indicating  a close–but not 
exact–overlap  against the points  pertaining  to  the actual  three cycles. 

 
 

 
 

 
The mean-squared  error  still remains  at 0.006, despite the curve for  the predicted  results  arriving 
a little  earlier  in  time than  the curve for  the actual  results. 
 
Conclusions  and  Future Work 

 

Whereas  the problem in  regards  to  obtaining  cycle breakpoints  has  been  addressed,  there is  still 
much  work to  be done in  regards  to  predicting  next values  in  our  dataset so as  to  truly  bring 
artificial,  muscle movement to  life rather  than  leave it as  stationary.  The models  presented  in  this 
paper  that fall under  the category  of  time series  forecasting  yielded  results  that closely  matched 
our  actual  data points  with a minimal  mean-squared  error; however,  next values  predicted  either 
overlap  the test  set (as  seen using the autoregression  model)  or  replace  it entirely  in  the output 
(as  seen using the persistence model).  
 
In  comparing  the autoregression  model to  the persistence model,  it is  difficult to  say which  one 
exceeds  the other  in  performance  given  a difference  of  only  0.005 in  regards  to  the mean-squared 
error.  In  the future,  we may  or  may  not want to  incorporate  both  models.  Nonetheless,  it is 
necessary  to  not only  tweak  these models  so as  to  achieve  a higher  accuracy,  but also  look  more 
closely  into  combining  these models  against other  methods  that seek to  add  values  onto  our 
dataset rather  than  on top  of  a test  set or  in  replacement  of  a test  set. Despite such  improvements 

12 



to  be made,  the work in  this  paper  provides  a starting  point for  further  exploring  data prediction 
by means  of  time series  forecasting. 
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Appendix A 

 

 
1. Creative  Machines  Lab  point people 

a. Hod Lipson  -  hod.lipson@columbia.edu  
b. Aslan Miriyev  -  aslan.miriyev@columbia.edu 

2. Paper  point person 
a. Navraj Narula -  nnn2112@columbia.edu 

3. Soft material  for  soft actuators 
a. This  is  a paper  by Aslan Miriyev,  Kenneth  Stack,  and  Hod Lipson  recently 

published  in  the Nature Communications  journal.  In  order  to  get a better  idea of 
the material  used  to  design  the muscle as  well as  learn  about challenges  in  soft 
robotics,  it would be good to  review  this  paper  for  background 
knowledge–especially  to  understand  the context behind  the given  dataset 
discussed  in  this  paper. 
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Appendix B 

 

 

The values  returned  represent array  indices.  Given  such  indices  returned,  we know  that using 
NumPy’s  built-in  extrema  function  is  not a valid  option  for  finding  local minimums  and 
maximums  since they  should be at least  130 values  apart. 
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Appendix C 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
My generator  function  to  retrieve  local minimum and  maximum values  is  displayed  in  the image 
above.  In  our  case,  lst  would  be the list  containing  load  values  to  be passed  in  as  a parameter  to 
the function. 
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Appendix D 

 

Cycle: 1 
Minimum value: 0.51372 
Maximum value: 132.54321 
Total time per  cycle:  242.29998 
Cooling  time per  cycle:  161.29998 
Heating  time per  cycle:  80.9 
 
 
Cycle: 2 
Minimum value: 0.50146 
Maximum value: 132.57836 
Total time per  cycle:  334.6 
Cooling  time per  cycle:  262.80003 
Heating  time per  cycle:  71.7 
 
Cycle: 3 
Minimum value: 0.50416 
Maximum value: 131.58451 
Total time per  cycle:  289.2 
Cooling  time per  cycle:  235.8 
Heating  time per  cycle:  53.29994 
 
Cycle: 4 
Minimum value: 1.50691 
Maximum value: 131.54046 
Total time per  cycle:  344.39994 
Cooling  time per  cycle:  249.29988 
Heating  time per  cycle:  95.0 
 
Cycle: 5 
Minimum value: 0.50848 
Maximum value: 133.5142 
Total time per  cycle:  322.99988 
Cooling  time per  cycle:  250.69988 
Heating  time per  cycle:  72.2 
 
Cycle: 6 
Minimum value: 0.50238 
Maximum value: 132.6618 
Total time per  cycle:  323.2 
Cooling  time per  cycle:  251.2 
Heating  time per  cycle:  71.89988 
 
Cycle: 7 
Minimum value: 0.52059 
Maximum value: 132.69964 
Total time per  cycle:  313.00012 
Cooling  time per  cycle:  252.90012 

Heating  time per  cycle:  60.0 
 
Cycle: 8 
Minimum value: 0.5009 
Maximum value: 132.63109 
Total time per  cycle:  311.3 
Cooling  time per  cycle:  260.8 
Heating  time per  cycle:  50.4 
 
Cycle: 9 
Minimum value: 0.52352 
Maximum value: 131.53477 
Total time per  cycle:  274.0 
 
Cooling  time per  cycle:  224.0 
Heating  time per  cycle:  49.9 
 
Cycle: 10 
Minimum value: 0.50309 
Maximum value: 131.55767 
Total time per  cycle:  291.3 
Cooling  time per  cycle:  222.3 
Heating  time per  cycle:  68.9 
 
Cycle: 11 
Minimum value: 0.52487 
Maximum value: 131.57019 
Total time per  cycle:  292.60025 
Cooling  time per  cycle:  222.80025 
Heating  time per  cycle:  69.70025 
 
Cycle: 12 
Minimum value: 0.53089 
Maximum value: 132.52823 
Total time per  cycle:  297.59975 
Cooling  time per  cycle:  226.0 
Heating  time per  cycle:  71.5 
 
Cycle: 13 
Minimum value: 0.50404 
Maximum value: 131.56165 
Total time per  cycle:  280.0 
Cooling  time per  cycle:  208.5 
Heating  time per  cycle:  71.39975 
 
Cycle: 14 
Minimum value: 1.51977 
Maximum value: 131.67785 

Total time per  cycle: 308.20025 
Cooling  time per  cycle: 217.8 
Heating  time per  cycle: 90.3 
 
Cycle: 15 
Minimum value: 0.52461 
Maximum value: 131.58631 
Total time per  cycle: 293.5995 
Cooling  time per  cycle: 220.5995 
Heating  time per  cycle: 72.9 
 
Cycle: 16 
Minimum value: 0.50027 
Maximum value: 131.61126 
Total time per  cycle: 296.7 
 
Cooling  time per  cycle: 223.5 
Heating  time per  cycle: 73.1 
 
Cycle: 17 
Minimum value: 0.50253 
Maximum value: 130.64782 
Total time per  cycle: 295.4 
Cooling  time per  cycle: 221.2 
Heating  time per  cycle: 74.0995 
 
Cycle: 18 
Minimum value: 0.5016 
Maximum value: 131.55186 
Total time per  cycle: 300.8 
Cooling  time per  cycle: 225.4 
Heating  time per  cycle: 75.3 
 
Cycle: 19 
Minimum value: 0.50355 
Maximum value: 131.64112 
Total time per  cycle: 301.1 
Cooling  time per  cycle: 223.8 
Heating  time per  cycle: 77.1995 
 
Cycle: 20 
Minimum value: 0.50285 
Maximum value: 130.7148 
Total time per  cycle: 278.5 
Cooling  time per  cycle: 201.5995 
Heating  time per  cycle: 76.8005 
 
Cycle: 21 
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Minimum value: 1.50497 
Maximum value: 131.60804 
Total time per  cycle:  339.3995 
Cooling  time per  cycle:  247.3995 
Heating  time per  cycle:  91.8995 
 
Cycle: 22 
Minimum value: 0.50203 
Maximum value: 130.68189 
Total time per  cycle:  232.3995 
Cooling  time per  cycle:  173.0 
Heating  time per  cycle:  59.2995 
 
Cycle: 23 
Minimum value: 4.50012 
Maximum value: 130.50085 
Total time per  cycle:  364.5 
 
Cooling  time per  cycle:  230.7005 
Heating  time per  cycle:  133.7 
 
Cycle: 24 
Minimum value: 0.51336 
Maximum value: 131.53273 
Total time per  cycle:  310.5 
Cooling  time per  cycle:  226.9 
Heating  time per  cycle:  83.5 
 
Cycle: 25 
Minimum value: 0.52311 
Maximum value: 130.55855 
Total time per  cycle:  316.3 
Cooling  time per  cycle:  231.5 
Heating  time per  cycle:  84.6995 
 
Cycle: 26 
Minimum value: 0.50607 
Maximum value: 131.51486 
Total time per  cycle:  328.0 
Cooling  time per  cycle:  241.3005 
Heating  time per  cycle:  86.6 
 
Cycle: 27 
Minimum value: 0.52793 
Maximum value: 131.57064 
Total time per  cycle:  311.7 
Cooling  time per  cycle:  220.7 
Heating  time per  cycle:  90.9 
 
Cycle: 28 

Minimum value: 0.50275 
Maximum value: 131.50829 
Total time per  cycle:  300.599 
Cooling  time per  cycle:  210.699 
Heating  time per  cycle:  89.7995 
 
Cycle: 29 
Minimum value: 1.51489 
Maximum value: 131.51 
Total time per  cycle:  334.899 
Cooling  time per  cycle:  228.699 
Heating  time per  cycle:  106.1 
 
Cycle: 30 
Minimum value: 0.50042 
Maximum value: 131.50921 
Total time per  cycle:  326.5 
 
Cooling  time per  cycle:  228.2 
Heating  time per  cycle:  98.2 
 
Cycle: 31 
Minimum value: 0.51261 
Maximum value: 130.71489 
Total time per  cycle:  323.2 
Cooling  time per  cycle:  222.0 
Heating  time per  cycle:  101.1 
 
Cycle: 32 
Minimum value: 1.53942 
Maximum value: 130.54335 
Total time per  cycle:  359.301 
Cooling  time per  cycle:  240.801 
Heating  time per  cycle:  118.401 
 
Cycle: 33 
Minimum value: 0.51392 
Maximum value: 130.5877 
Total time per  cycle:  342.8 
Cooling  time per  cycle:  232.0 
Heating  time per  cycle:  110.7 
 
Cycle: 34 
Minimum value: 1.5089 
Maximum value: 131.5352 
Total time per  cycle:  400.6 
Cooling  time per  cycle:  272.3 
Heating  time per  cycle:  128.199 
 
Cycle: 35 

Minimum value: -0.49218 
Maximum value: 130.50038 
Total time per  cycle: 361.301 
Cooling  time per  cycle: 255.5 
Heating  time per  cycle: 105.701 
 
Cycle: 36 
Minimum value: 0.51553 
Maximum value: 130.51911 
Total time per  cycle: 398.3 
Cooling  time per  cycle: 271.3 
Heating  time per  cycle: 126.9 
 
Cycle: 37 
Minimum value: 0.51303 
Maximum value: 130.56107 
Total time per  cycle: 422.199 
 
Cooling  time per  cycle: 287.5 
Heating  time per  cycle: 134.6 
 
Cycle: 38 
Minimum value: 0.5018 
Maximum value: 130.53618 
Total time per  cycle: 441.0 
Cooling  time per  cycle: 297.101 
Heating  time per  cycle: 143.8 
 
Cycle: 39 
Minimum value: 0.5113 
Maximum value: 130.53745 
Total time per  cycle: 459.9 
Cooling  time per  cycle: 309.101 
Heating  time per  cycle: 150.7 
 
Cycle: 40 
Minimum value: 0.51186 
Maximum value: 129.57251 
Total time per  cycle: 466.4 
Cooling  time per  cycle: 305.7 
Heating  time per  cycle: 160.599 
 
Cycle: 41 
Minimum value: 0.51316 
Maximum value: 130.57625 
Total time per  cycle: 486.099 
Cooling  time per  cycle: 318.0 
Heating  time per  cycle: 168.0 
 
Cycle: 42 

19 



Minimum value: 0.50586 
Maximum value: 130.56697 
Total time per  cycle:  510.2 
Cooling  time per  cycle:  335.5 
Heating  time per  cycle:  174.599 
 
Cycle: 43 
Minimum value: 0.51402 
Maximum value: 130.55333 
Total time per  cycle:  477.2 
Cooling  time per  cycle:  320.2 
Heating  time per  cycle:  156.9 
 
 
 

Cycle: 44 
Minimum value: 1.50876 
Maximum value: 130.53639 
Total time per  cycle:  521.201 
 
Cooling  time per  cycle:  321.201 
Heating  time per  cycle:  199.901 
 
Cycle: 45 
Minimum value: 1.50364 
Maximum value: 130.5965 
Total time per  cycle:  540.301 
 
Cooling  time per  cycle:  333.5 
Heating  time per  cycle:  206.7 

Cycle: 46 
Minimum value: 0.5051 
Maximum value: 130.5785 
Total time per  cycle: 562.2 
 
Cooling  time per  cycle: 358.8 
Heating  time per  cycle: 203.299 
 
Cycle: 47 
Minimum value: 0.50993 
Maximum value: 129.5121 
Total time per  cycle: 531.501 
Cooling  time per  cycle: 347.5 
Heating  time per  cycle: 183.9 
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